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a b s t r a c t

This paper proposes a methodology for cigarette classification employing Near Infrared Reflectance spec-
trometry and variable selection. For this purpose, the Successive Projections Algorithm (SPA) is employed
to choose an appropriate subset of wavenumbers for a Linear Discriminant Analysis (LDA) model. The
proposed methodology is applied to a set of 210 cigarettes of four different brands. For comparison, Soft
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Independent Modelling of Class Analogy (SIMCA) is also employed for full-spectrum classification. The
resulting SPA–LDA model successfully classified all test samples with respect to their brands using only
two wavenumbers (5058 and 4903 cm−1). In contrast, the SIMCA models were not able to achieve 100%
of classification accuracy, regardless of the significance level adopted for the F-test. The results obtained
in this investigation suggest that the proposed methodology is a promising alternative for assessment of
uccessive projections algorithm
inear discriminant analysis

cigarette authenticity.

. Introduction

Cigarette authenticity is an important matter, which involves
conomic aspects and consumer health issues. In fact, cigarette
rands may differ in retail price, as well as in the levels of potentially
azardous substances such as nicotine and tar [1,2]. Therefore, the
ssessment of compliance with the cigarette label and the identi-
cation of counterfeit products are analytical problems that merit

nvestigation.
The discrimination of cigarette types is usually carried out

n the basis of visual aspect, flavour and aroma. However, such
n inspection is subjective and may lead to unreliable results.
s an alternative, instrumental techniques have been employed

o obtain a more objective and accurate assessment of cigarette
amples. Examples include gas chromatography (GC) and liquid
hromatography (LC) [3–5], inductively coupled plasma mass spec-
rometry (ICP-MS) [6], inductively coupled plasma optical emission
pectrometry (ICP-OES) [7,8], nuclear magnetic resonance (NMR)

9] and pyrolysis single-photon ionisation time-of-flight mass
pectrometry (Py-SPI-TOFMS) [10]. However, these techniques
re laborious and time-consuming, require harmful reagents and
nvolve expensive equipment with high operation and/or mainte-

∗ Corresponding author. Tel.: +55 83 3216 7438; fax: +55 83 3216 7437.
E-mail address: laqa@quimica.ufpb.br (M.C.U. Araújo).

039-9140/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2009.05.031
© 2009 Elsevier B.V. All rights reserved.

nance costs. An interesting alternative to overcome such drawbacks
would be the use of near infrared (NIR) spectroscopy, a technique
that enables practical, fast and less dispendious analyses.

NIR spectroscopy has been successfully applied to discrimina-
tion and/or classification of various materials, including alcoholic
beverages [11,12], food products [12–15], fuel samples [16–18],
polymers [19] and agricultural goods [20], among others [21,22].
However, only a single paper [23] has been published on the use
of NIR spectroscopy for cigarette discrimination. In that work, 142
cigarettes of two different brands were distinguished by using
the Adaboost algorithm and Linear Discriminant Analysis (LDA)
applied to near infrared reflectance (NIRR) measurements. Feature
extraction was performed by principal component analysis (PCA)
or Kernel Principal Component Analysis (KPCA).

The present paper proposes an analytical methodology for
cigarette classification based on the use of NIRR spectroscopy and
variable selection. For this purpose, the Successive Projections Algo-
rithm (SPA) [17] is employed to choose an appropriate subset
of wavenumbers for a Linear Discriminant Analysis (LDA) model.
Recently, SPA–LDA has been successfully applied to the classifi-
cation of edible vegetable oils and soil samples by using square

wave voltammetry (SWV) [24] and laser-induced breakdown spec-
troscopy (LIBS) [25], respectively. In comparison with the approach
adopted in [23], SPA–LDA provides a simpler model in the sense
that the classification variables correspond to actual reflectance
measurements, rather than PCA/KPCA scores.
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The proposed methodology is applied to a set of 210 cigarettes
omprising four brands of different chemical composition and retail
rice. For comparison, Soft Independent Modelling of Class Analogy
SIMCA) [26] is also employed. SIMCA is a well-known method for
ull-spectrum classification, which has been widely employed in
pplications involving NIR data [27–30].

. Background

.1. Notation

Matrices will be represented by bold capital letters, column vec-
ors by bold lowercase letters, and scalars by italic characters. The

atrix of instrumental responses will be denoted by X. The nth
bject in matrix X will be denoted by xn (that is, xT

n will correspond
o the nth row of matrix X). The kth column of matrix X will be
enoted by xk.

.2. Linear Discriminant Analysis

The LDA classification method employs the Mahalanobis
istance [31,32], which can be defined as follows. Let x =
x1, x2, . . . xd]T be an object that must be assigned to one out of c
ossible classes. In the case of NIRR data, the classification variables
1, x2, . . . xd correspond to reflectance measurements acquired at d
avenumbers. The squared Mahalanobis distance r2(x, �j) between
and the center of the jth class (j = 1, 2, . . ., c) is defined as

2(x, �j) = (x − �j)
T ˙j

−1(x − �j) (1)

here �j (d × 1) and �j (d × d) are the mean vector and covari-
nce matrix for the class under consideration [32]. If the true mean
nd covariance values for the population are unknown (which is
sually the case), maximum likelihood estimates mj and Sj may be
mployed in place of �j and �j, respectively. These estimates can be
btained from a finite set of training objects of known classification
31]. It is worth noting that LDA estimates a single pooled covariance

atrix S, instead of using a separate estimate for each class. This reg-
larization procedure simplifies the classification model and results

n linear decision surfaces (hyperplanes) in Rd [31,33,34]. With this
odification, the squared Mahalanobis distance between x and the

enter of the jth class is calculated as

2(x, mj) = (x − mj)
T S−1(x − mj) (2)

Object x is then assigned to the class j for which r2(x, mj) has
he smallest value.

In order to have a well-posed problem, the number of train-
ng objects must be larger than the number d of variables to be
ncluded in the LDA model. Otherwise, the estimated covariance

atrix S will be singular, which prevents the calculation of the
atrix inverse in Eq. (2). Therefore, the use of LDA for classification

f spectral data usually requires appropriate variable selection pro-
edures [17,33,35]. In the present work, the Successive Projections
lgorithm (SPA) is adopted for this purpose.

.3. Successive Projections Algorithm

The Successive Projections Algorithm [36,37] was originally pro-
osed by Araújo et al. [38] in the context of multivariate calibration.

n SPA, variable selection is formulated as a constrained combi-
atorial optimization problem, in which subsets of variables are

ested and compared with respect to the performance of the result-
ng model. The optimization is said to be constrained because the
earch for an optimum is restricted to certain subsets of variables.
uch subsets are formed according to a sequence of projection oper-
tions involving the matrix X of instrumental responses, as follows.
79 (2009) 1260–1264 1261

Suppose that the available x-data are disposed in a matrix X of
dimensions (N × K) such that the kth variable xk is associated to
the kth column vector xk ∈ �N. The column vectors are assumed to
be mean-centered. Starting from each variable xk, k = 1, . . ., K, the
following sequence of projection operations is carried out [39].

Step 1 (initialization). Let

z1 = xk

i = 1
xj,i = xj, j = 1, . . . , K
SEL(1, k) = k

Let M be the largest number of variables to be included in a
subset, as specified by the analyst.

Step 2. Calculate the matrix Pi of projection onto the subspace
orthogonal to zi as

Pi = I − zi(zi)
T

(zi)T
zi

(3)

where I is an identity matrix of appropriate dimensions.

Step 3. Calculate the projected vectors xj,i+1 as

xj,i+1 = Pixj,i (4)

for all j = 1, . . ., K.

Step 4. Determine the index j* of the largest projected vector and
store this index in matrix SEL:

j∗ = arg max
j=1, ..., K

||xj,i+1|| (5)

SEL(i + 1, k) = j∗ (6)

Step 5. Let zi+1 = xj*, i+1

Step 6. Let i = i + 1. If i < M return to Step 2.

After these operations are completed, a total of K × M subsets of
variables will be considered in the search for the optimum solution.
For each value of k (ranging from 1 to K), and for each value of
i (ranging from 1 to M), a subset of i variables is defined by the
indexes SEL(1, k), SEL(2, k), . . ., SEL(i, k).

In a subsequent paper [17], SPA was adapted for use in classifica-
tion problems. As in the original formulation [38], candidate subsets
of variables are formed as the result of projection operations car-
ried out on the matrix of instrumental responses for the training
data. However, prior to these operations, the objects belonging to
the same class are centered in the mean of the class. The resulting
subsets of variables are then compared in terms of a cost function
G calculated for a given validation data set as

G = 1
Nv

Nv∑

n=1

gn, (7)

where gn is defined as

gn = r2(xn, mI(n))

minI(m) /= I(n)r2(xn, mI(m))
. (8)

where I(n) is the index of the true class for the nth validation object
xn. In Eq. (8), the numerator r2(xn, mI(n)) is the squared Maha-

lanobis distance between xn and the center of its true class, whereas
the denominator corresponds to the squared Mahalanobis distance
between xn and the center of the closest wrong class. The cost func-
tion G can be interpreted as an average risk of misclassification of
the validation data.
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. Experimental

.1. Samples

A total of 210 cigarette samples of different lots and four brands
A, 45; B, 57; C, 57 and D, 51) were acquired in the city of João Pessoa,
araíba, Brazil. Before NIRR spectral recording, these samples were
ried in an oven at 60 ◦C for 24 h, ground, sieved to a particle size
maller than 300 �m and stored in desiccators.

.2. NIRR spectra measurements

The spectra were recorded in triplicate by using a Spectrum
X FTIR spectrophotometer (PerkinElmer), with spectral reso-

ution of 1 cm−1 and 32 scans in the near infrared range of
5,000–2700 cm−1. After a preliminary inspection of the spec-
ra, those regions in which the detector was saturated or the
ignal-to-noise ratio was poor were discarded. As a result, the
420–4252 cm−1 interval was selected for the study.

A mean spectrum was then calculated for each sample by aver-
ging the triplicate spectra. The spectrum of a KBr sample was used
s blank.

.3. Software

The samples were divided into training, validation and test sets
y applying the classic Kennard-Stone (KS) uniform sampling algo-
ithm [40] to the NIRR spectra. Each class was treated separately,
s described in Ref. [17]. The number of samples in each set is
resented in Table 1.

As in Ref. [17], the training and validation samples were used in
he modelling procedures (including SPA variable selection for LDA
nd determination of principal components in SIMCA) whereas the
est samples were only used in the final evaluation and comparison
f the classification models.

Spectrum differentiation, Savitzky–Golay smoothing [41], prin-
ipal component analysis (PCA) and SIMCA were carried out in
nscrambler® 9.6 (CAMO S.A.). PCA and SIMCA were performed
ith the default settings of the software. Four different significance

evels (1%, 5%, 10%, 25%) of the F-test for SIMCA classification were
ested. The KS and SPA–LDA algorithms were coded in Matlab® 6.5.

. Results and discussions

.1. NIRR spectra

Fig. 1a presents the raw NIRR spectra of the 210 cigarette sam-
les in the range of 5420–4252 cm−1. As can be seen, the spectra
re noisy and display systematic variations in the spectral baseline.

hese problems were circumvented by applying the Savitzky–Golay
rst derivative procedure with a second-order polynomial and a
21-point window, as shown in Fig. 1b. Each resulting spectrum
ad 1049 points.

able 1
umber of training, validation and test samples in each class.

lass Set
Training Validation Test

25 10 10
27 15 15
27 15 15
27 12 12

otal 106 52 52
Fig. 1. (a) Original and (b) pre-processed NIRR spectra of the cigarette samples.

4.2. Principal Component Analysis

Fig. 2 presents the PC2 × PC1 score plot resulting from the appli-
cation of PCA to the derivative spectra. As can be seen, there is
no overlapping between the four cigarette brands, which indicates
that the NIRR spectrum conveys appropriate information for the
classification task.

4.3. SIMCA classification

A SIMCA model was built for each of the four cigarette brands.
Table 2 presents the classification results obtained by applying
the SIMCA models to the test set. It is worth noting that SIMCA
errors can be of two types. A type-I error consists of a sample
not included in its own class, such as the A sample that was not
included in the A model at the 25% significance level. A type-II
error consists of a sample included in an incorrect class, such as
the four A samples included in the B model at the 1% significance
level.
4.4. SPA–LDA classification

The optimum number of variables for SPA–LDA was determined
from the minimum of the cost function G displayed in Fig. 3. As
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Table 2
Number of SIMCA errors in the test set for four different significance levels of the F-test (1%, 5%, 10%, and 25%).

Model

A (7 PCs) B (4 PCs) C (7 PCs) D (5 PCs)

Level (%) 1 5 10 25 1 5 10 25 1 5 10 25 1 5 10 25

A – – – 1 4 – – – – – – – 1 – – –
B – – – – – – – – – – – – – – – –
C – – – – – – – – – – – 2 1 – – –
D 3 3 2 – – – – – 1 – – – – – – 1

The number of principal components in each SIMCA class is also indicated.

F
�
p

c
a
5

s
S

s

Fig. 4. Mean derivative spectrum of the data set with indication of wavenumbers
selected by SPA–LDA.

Table 3
Summary of results (classification errors in the test set) for SPA–LDA and SIMCA
(four different significance levels of the F-test).

SPA–LDA SIMCA (1%) SIMCA (5%) SIMCA (10%) SIMCA (25%)

Type I 0 0 0 0 6
Type II 0 10 3 2 0

Total 0 10 3 2 6
ig. 2. PC2 × PC1 score plot for the overall set of 210 cigarette samples (©: A; �: B;
: C and �: D). The variance explained by each principal component is indicated in
arenthesis.

an be seen, a well-localized minimum is obtained for two vari-
bles. These variables correspond to the wavenumbers 4903 and
058 cm−1, as indicated in Fig. 4.

The resulting LDA model correctly classified all test samples. As

hown in Table 3, this classification performance is not achieved by
IMCA regardless of the significance level adopted for the F-test.

For illustration, Fig. 5 presents the overall set of 210 cigarette
amples in a bivariate plot for the two wavenumbers selected

Fig. 3. Determination of the optimum number of variables in SPA–LDA.

Fig. 5. Bivariate plot of the 210 cigarette samples (©: A; �: B; �: C and �: D) for the
two wavenumbers selected by SPA (4903 and 5058 cm−1). The thick lines are the
decision boundaries established by LDA.
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y SPA. As can be seen, the four brands are properly separated
y the linear boundaries resulting from LDA, which indicates
hat the two spectral variables are appropriate for discrimination
urposes.

. Conclusions

This paper proposed a methodology for cigarette classification
mploying NIRR spectrometry and Linear Discriminant Analysis
oupled with the Successive Projections Algorithm for wavenumber
election. In a case study involving four different cigarette brands,
he resulting SPA–LDA model successfully classified all test samples
sing only two wavenumbers (5058 and 4903 cm−1). In contrast,
raditional full-spectrum SIMCA models were not able to achieve
00% of classification accuracy, regardless of the significance level
dopted for the F-test.

The results obtained in this investigation suggest that the pro-
osed methodology is a promising alternative for assessment of
igarette authenticity. It is worth noting that the methodology is
ased solely on spectroscopic measurements and chemometrics
echniques. Therefore, laborious procedures for chemical charac-
erization of the cigarettes are not required. On the other hand,
epresentative sets of training and validation samples must be avail-
ble for variable selection and model-building purposes. Moreover,
ince the classification procedure is data-driven, the results cannot
e easily generalized to the analysis of cigarette brands that were
ot included in the study. In particular, the number of required spec-
ral variables (wavenumbers) would likely depend on the chemical
imilarity between the brands, as well as the signal-to-noise ratio
f the measurements.
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